论文标题
正则深度签名的距离场,以产生反应性运动
Regularized Deep Signed Distance Fields for Reactive Motion Generation
论文作者
论文摘要
自主机器人应在现实世界中的动态环境中运行,并在紧密的空间中与人合作。允许机器人离开结构化实验室和制造设置的关键组成部分是他们与周围世界的在线和实时碰撞评估的能力。基于距离的约束是使机器人计划其行动并安全采取行动,保护人类及其硬件的基础。但是,不同的应用需要不同的距离分辨率,从而导致了测量距离场W.R.T.的各种启发式方法。障碍物在计算上很昂贵,并阻碍了他们在动态障碍物避免用例中的应用。我们提出了一个正则签名的距离距离(REDSDF),这是一种单个神经隐式函数,可以在任何规模上计算平滑距离场,这要归功于我们有效的数据生成和训练期间的简单归纳偏置,对高维歧管和诸如人类等明显的身体进行细粒度分辨率。我们证明了我们的方法在共享工作区中的全身控制(WBC)和安全的人类机器人相互作用(HRI)中的代表性模拟任务中的有效性。最后,我们在使用移动操纵器机器人的HRI移交任务中提供了现实世界应用的概念证明。
Autonomous robots should operate in real-world dynamic environments and collaborate with humans in tight spaces. A key component for allowing robots to leave structured lab and manufacturing settings is their ability to evaluate online and real-time collisions with the world around them. Distance-based constraints are fundamental for enabling robots to plan their actions and act safely, protecting both humans and their hardware. However, different applications require different distance resolutions, leading to various heuristic approaches for measuring distance fields w.r.t. obstacles, which are computationally expensive and hinder their application in dynamic obstacle avoidance use-cases. We propose Regularized Deep Signed Distance Fields (ReDSDF), a single neural implicit function that can compute smooth distance fields at any scale, with fine-grained resolution over high-dimensional manifolds and articulated bodies like humans, thanks to our effective data generation and a simple inductive bias during training. We demonstrate the effectiveness of our approach in representative simulated tasks for whole-body control (WBC) and safe Human-Robot Interaction (HRI) in shared workspaces. Finally, we provide proof of concept of a real-world application in a HRI handover task with a mobile manipulator robot.