论文标题
小型布尔值的Junta阈值在切片上功能
Junta threshold for low degree Boolean functions on the slice
论文作者
论文摘要
我们表明,如果$ k \ geq 2d $,则布尔度$ d $在slice $ \ binom {[n]} {k} $上的功能是junta,并且此界限很清晰。我们证明,对于任意有限$ a $的$ a $ a值$ d $函数以及在切片的无限类似物上的功能的结果。
We show that a Boolean degree $d$ function on the slice $\binom{[n]}{k}$ is a junta if $k \geq 2d$, and that this bound is sharp. We prove a similar result for $A$-valued degree $d$ functions for arbitrary finite $A$, and for functions on an infinite analog of the slice.