论文标题
Stopgap- Belle II顶部桶形PID系统作为CMOS快速计时传感器的演示器的飞行时间延长
STOPGAP -- a Time-of-Flight Extension for the Belle II TOP Barrel PID System as a Demonstrator for CMOS Fast Timing Sensors
论文作者
论文摘要
Belle II枪管区域具有基于在相互作用点上排列的16个融合 - 硅棒的传播时间(顶部)粒子识别系统,该杆的相互作用点充当了Cherenkov散热器。由于顶部系统的机械设计,这些石英条不会重叠,但之间的间隙约为2厘米。这导致了标称顶部接受区域中所有轨道中约6%的轨道逃脱而无需穿越任何石英条,因此没有从顶部系统中提供任何可用的粒子识别信息,并且由于边缘效应而导致的其他3%的轨道被降低。我们提出了一种可能的解决方案,以补充顶部缝隙仪器(StopGap)的形式在顶部接受中纠正这些差距,该形式覆盖了带有快速硅探测器相邻的石英杆之间的死区域,以直接测量遍历颗粒的跨度颗粒的飞行时间。现代,快速的时机传感器和读数可以为手头的任务提供足够的时间分辨率,因此,可以在Belle II II中央漂移室(CDC)和顶部系统之间的限量空间中构建Stopgap模块。 在本文中,我们提出了一项模拟研究,该研究证明了硅飞行器系统基于其在$υ(4S)\ Rightarrow B \ bar {B} $事件中使用Belle II II模拟和重建软件模拟的事件的可行性。我们讨论了可能的传感器技术的性能要求,并证明可以通过新颖的,快速的单片CMOS传感器来实现这样的项目,这些传感器有望达到MIP时正时分辨率下降到50PS。此外,我们讨论了下半径在轨道触发下的快速正时层的使用以及低矩<1GEV/c的粒子识别。
The Belle II barrel region is instrumented with the Time of Propagation (TOP) particle identification system based on sixteen fused-silica bars arranged around the interaction point acting as Cherenkov radiator. Due to the mechanical design of the TOP system these quartz bars do not overlap, but leave a gap of around 2cm between them. This leads to around 6% of all tracks in the nominal TOP acceptance region to escape without traversing any of the quartz bars and thus not giving any usable particle identification information from the TOP system and an additional 3% of tracks being degraded due to edge effects. We propose a possible solution to remedy these gaps in the TOP acceptance in the form of a Supplemental TOP GAP instrumentation (STOPGAP) that covers the dead area between adjacent quartz bars with fast silicon detectors to directly measure the time-of-flight of traversing particles for particle identification purposes. Modern, fast timing silicon sensors and readouts can offer sufficient time resolution for the task at hand, so that STOPGAP modules could be built compact enough to fit into the limited space available in the area of interest between the Belle II central drift chamber (CDC) and the TOP system. In this article, we present a simulation study demonstrating the feasibility of a silicon time-of-flight system based on its reconstruction performance in $Υ(4S)\rightarrow B\bar{B}$ events simulated using the Belle II simulation and reconstruction software. We discuss the performance requirements for possible sensor technologies and demonstrate that such a project could be realised with novel, fast monolithic CMOS sensors that are expected to reach MIP timing resolutions of down to 50ps. Additionally, we discuss the use of fast timing layers at lower radii for track triggering as well as particle identification at low momenta <1GeV/c.