论文标题

没有特征衡量标准的最小亚型和最小流

Minimal subdynamics and minimal flows without characteristic measures

论文作者

Frisch, Joshua, Seward, Brandon, Zucker, Andy

论文摘要

给定一个可计数的$ g $和$ g $ -flow $ x $,如果是$ \ mathrm {aut}(aut}(x,x,g)$ - 不变,则p(x)$中的度量为$μ\。 Frisch和Tamuz询问了任何最小的$ g $流,对于任何组$ g $,这都不承认特征性的度量。我们为每个可数的$ g $构建这样的最小流量。一路走来,我们有动力考虑一个我们称为最小亚型的问题家庭:鉴于可计数的$ g $和一系列无限的子组$ \ {δ_i:i \ in I \} $,何时有忠实的$ g $ - flow $ g $ - flow的每一个$δ__i$ acts mimmimally acts mimmimally actss mimmimally?

Given a countable group $G$ and a $G$-flow $X$, a measure $μ\in P(X)$ is called characteristic if it is $\mathrm{Aut}(X, G)$-invariant. Frisch and Tamuz asked about the existence of a minimal $G$-flow, for any group $G$, which does not admit a characteristic measure. We construct for every countable group $G$ such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group $G$ and a collection of infinite subgroups $\{Δ_i: i\in I\}$, when is there a faithful $G$-flow for which every $Δ_i$ acts minimally?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源