论文标题
应变控制的临界速度在无序网络的流变学中减慢
Strain-controlled critical slowing down in the rheology of disordered networks
论文作者
论文摘要
网络和密集的悬浮液经常位于软(或类似流体)和刚性(或固体状)方面之间的边界附近。这些机制之间的过渡可以由结构,密度或施加的应力或应变的变化驱动。通常,在这些系统中的发作或刚性丧失附近,耗散限制的异质非植物重排主导了宏观的粘弹性响应,从而导致放松时间和幂律流变学分歧。在这里,我们描述了非亲和力与多余粘度之间的简单定量关系。我们在计算上测试了这种非亲和力 - 粘度关系,并证明了其在细丝网络和密集悬浮液的模拟中的流变学后果。我们还预测了应变僵硬过渡附近的半循环和僵硬的生物聚合物网络流变学中的关键特征。
Networks and dense suspensions frequently reside near a boundary between soft (or fluid-like) and rigid (or solid-like) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.