论文标题
非本地场理论中的拓扑缺陷
Topological defects in nonlocal field theories
论文作者
论文摘要
在本文中,我们在非本地场理论的背景下首次研究拓扑缺陷,其中Lagrangians包含无限顺序差异操作员。特别是,我们分析了域壁。尽管非线性无限阶微分方程的复杂性,我们仍能够找到近似的分析解决方案。我们首先确定靠近真空吸尘器的非局部域壁的渐近行为。然后,我们通过围绕众所周知的局部“扭结”而扰动线性的非局部解,并表明它与渐近行为一致。我们开发一种形式主义来研究围绕原点的解决方案,并使用它来验证线性化解决方案的有效性。我们发现,与当地情况相比,非局部性使域壁的宽度较薄,并且每单位区域的能量较小。对于正在研究的特定域壁解决方案,我们对非局部性的能量量表进行了理论约束,该限制必须大于相应的对称性量表。我们还简要评论了其他拓扑缺陷,例如字符串和单极管。
In this paper, we study for the first time topological defects in the context of nonlocal field theories in which Lagrangians contain infinite-order differential operators. In particular, we analyze domain walls. Despite the complexity of non-linear infinite-order differential equations, we are able to find an approximate analytic solution. We first determine the asymptotic behavior of the nonlocal domain wall close to the vacua. Then, we find a linearized nonlocal solution by perturbing around the well-known local 'kink', and show that it is consistent with the asymptotic behavior. We develop a formalism to study the solution around the origin, and use it to verify the validity of the linearized solution. We find that nonlocality makes the width of the domain wall thinner, and the energy per unit area smaller as compared to the local case. For the specific domain wall solution under investigation, we derive a theoretical constraint on the energy scale of nonlocality which must be larger than the corresponding symmetry-breaking scale. We also briefly comment on other topological defects like string and monopole.