论文标题
水库计算机的神经编程语言
A Neural Programming Language for the Reservoir Computer
论文作者
论文摘要
从逻辑推理到心理模拟,生物学和人工神经系统具有令人难以置信的计算能力。这样的神经计算机通过连续表示数据并以本质的平行和分布方式来代表数据,从而提供了一种新颖的计算范例。为了利用这项计算,先前的工作已经开发了广泛的培训技术来了解现有的神经网络。但是,缺乏用于神经网络的具体和低级编程语言,这使我们无法充分利用神经计算框架。在这里,我们使用储层计算(一个简单的复发性神经网络)提供了这样的编程语言,并缩小了我们如何概念化和实现神经计算机和硅计算机之间的差距。通过将储层的内部表示和动态分解为其输入的象征基础,我们定义了一个低级神经机器代码,我们用来对储层进行编程以求解复杂方程并将混乱的动力学系统存储为随机访问存储器(DRAM)。使用此表示形式,我们提供了软件虚拟化和逻辑电路的完全分布的神经实现,甚至还为储层计算机内部的乒乓球游戏编程。综上所述,我们定义了神经计算的具体,实用且完全可概括的实现。
From logical reasoning to mental simulation, biological and artificial neural systems possess an incredible capacity for computation. Such neural computers offer a fundamentally novel computing paradigm by representing data continuously and processing information in a natively parallel and distributed manner. To harness this computation, prior work has developed extensive training techniques to understand existing neural networks. However, the lack of a concrete and low-level programming language for neural networks precludes us from taking full advantage of a neural computing framework. Here, we provide such a programming language using reservoir computing -- a simple recurrent neural network -- and close the gap between how we conceptualize and implement neural computers and silicon computers. By decomposing the reservoir's internal representation and dynamics into a symbolic basis of its inputs, we define a low-level neural machine code that we use to program the reservoir to solve complex equations and store chaotic dynamical systems as random access memory (dRAM). Using this representation, we provide a fully distributed neural implementation of software virtualization and logical circuits, and even program a playable game of pong inside of a reservoir computer. Taken together, we define a concrete, practical, and fully generalizable implementation of neural computation.