论文标题

用多维高谐波载体包膜相光谱探测声子动力学

Probing phonon dynamics with multi-dimensional high harmonic carrier envelope phase spectroscopy

论文作者

Neufeld, Ofer, Zhang, Jin, De Giovannini, Umberto, Hubener, Hannes, Rubio, Angel

论文摘要

我们探索了单层六角形氮化物中的泵探针高谐波生成(HHG),其中Terahertz泵激发了一致的光学声子,随后通过强烈的红外脉冲探测了驱动HHG的强烈红外脉冲。我们通过最新的Ab-Initio计算发现,发射光谱的结构被相干的声子的存在减弱,并且不再由离散的谐波顺序组成,而是在高原区域的连续发射。 HHG产生的强烈振荡与泵探针延迟的函数相当,对应于晶格中的超快变化,例如键压缩或拉伸。我们进一步表明,在激发的声子周期和脉冲持续时间相同数量级的制度中,HHG过程对驱动场的载流子 - 固定相(CEP)敏感,即使脉冲持续时间太长,以至于在不存在圆筒旁声子的情况下没有观察到这种敏感性。 CEP敏感性与泵浦探针延迟的程度被证明是晶格中瞬时结构变化的高度选择性度量,为超快多维HHG-Spectroscopicy提供了一种新方法。值得注意的是,声子动力学获得的时间分辨率为〜1飞秒,由于固有的子周期对比度机制,它比探针脉冲持续时间短得多。我们的工作铺平了通向探测声子和超快材料结构变化的新型途径的道路,并提供了控制高谐波响应的机制。

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the excited phonon period and the pulse duration are of the same order of magnitude, the HHG process becomes sensitive to the carrier-envelope-phase (CEP) of the driving field, even though the pulse duration is so long that no such sensitivity is observed in the absence of coherent phonons. The degree of CEP sensitivity vs. pump-probe delay is shown to be a highly selective measure for instantaneous structural changes in the lattice, providing a new approach for ultrafast multi-dimensional HHG-spectroscopy. Remarkably, the obtained temporal resolution for phonon dynamics is ~1 femtosecond, which is much shorter than the probe pulse duration because of the inherent sub-cycle contrast mechanism. Our work paves the way towards novel routes of probing phonons and ultrafast material structural changes and provides a mechanism for controlling the high harmonic response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源