论文标题
Sherrington-Kirkpatrick Gibbs通过算法随机定位进行了抽样
Sampling from the Sherrington-Kirkpatrick Gibbs measure via algorithmic stochastic localization
论文作者
论文摘要
我们考虑了高温和没有外部场的自旋玻璃的Sherrington-Kirkpatrick模型,并研究了来自Gibbs分布在多项式时间的$μ$的采样问题。我们证明,对于任何反向温度$β<1/2 $,存在一种具有复杂性$ o(n^2)$的算法,该算法是从分布的$μ^{alg} $中取样的算法,该算法在正常化的wasserstein距离为$μ$。也就是说,存在$μ$和$μ^{alg} $的耦合,以便如果$(x,x,x,x^{alg})\ in \ { - 1,+1,+1 \}^n \ times \ times \ { - 1,+1,+1 \}^n $是从这个coupln中绘制的,然后是$ n^} e \ {|| x-x^{alg} || _2^2 \} = o_n(1)$。 Bauerschmidt和Bodineau以及Eldan,Koehler和Zeitouni的最佳先前结果暗示了有效的算法,以$β<1/4 $的价格(按更强的度量)进行样品(按更强的度量)。 我们通过引入合适的“稳定性”属性来对其进行采样算法,以负面的结果进行补充,该算法通过许多标准技术验证。我们证明,即使在标准化的瓦斯坦公制下,也没有稳定的算法可以以$β> 1 $的价格进行样品。 我们的采样方法基于随机定位的算法实现,该算法将尺寸$μ$ $μ$ $μ$ $μ$与单个配置倾斜,以及近似消息传递算法,该算法用于近似倾斜度的均值。
We consider the Sherrington-Kirkpatrick model of spin glasses at high-temperature and no external field, and study the problem of sampling from the Gibbs distribution $μ$ in polynomial time. We prove that, for any inverse temperature $β<1/2$, there exists an algorithm with complexity $O(n^2)$ that samples from a distribution $μ^{alg}$ which is close in normalized Wasserstein distance to $μ$. Namely, there exists a coupling of $μ$ and $μ^{alg}$ such that if $(x,x^{alg})\in\{-1,+1\}^n\times \{-1,+1\}^n$ is a pair drawn from this coupling, then $n^{-1}\mathbb E\{||x-x^{alg}||_2^2\}=o_n(1)$. The best previous results, by Bauerschmidt and Bodineau and by Eldan, Koehler, and Zeitouni, implied efficient algorithms to approximately sample (under a stronger metric) for $β<1/4$. We complement this result with a negative one, by introducing a suitable "stability" property for sampling algorithms, which is verified by many standard techniques. We prove that no stable algorithm can approximately sample for $β>1$, even under the normalized Wasserstein metric. Our sampling method is based on an algorithmic implementation of stochastic localization, which progressively tilts the measure $μ$ towards a single configuration, together with an approximate message passing algorithm that is used to approximate the mean of the tilted measure.