论文标题

质量$ \ unicode {x2013} $旋转重新参数化,用于快速参数估计灵感引力波信号

Mass$\unicode{x2013}$spin Re-Parameterization for Rapid Parameter Estimation of Inspiral Gravitational-Wave Signals

论文作者

Lee, Eunsub, Morisaki, Soichiro, Tagoshi, Hideyuki

论文摘要

从紧凑型二元合并(CBC)估算重力波的源参数是重力波天文学的关键分析任务。为了处理CBC信号的检测率提高,优化参数估计分析至关重要。该分析通常采用随机抽样技术,例如马尔可夫链蒙特卡洛(MCMC),其中探索了源参数空间并发现高贝叶斯后验概率密度的区域。放慢分析的瓶颈之一是质量和碰撞物体旋转之间的非平凡相关性,这使得探索质量$ \ unicode {x2013} $ spin空间极低效率。我们引入了一组新的质量$ \ unicode {x2013} $旋转采样参数,该参数使后验分布在新的参数空间中变得很简单,而不论参数的真实值如何。新的参数组合是作为限制后1.5后纽顿后波形的Fisher矩阵的主要成分。我们的重新参数化将MCMC的效率提高了$ \ sim10 $的二进制中子星的$ \ sim10 $,具有狭窄的旋转($ | \vecχ| <0.05 $)和$ \ sim100 $,具有宽旋转的先验($ | \ | \vecχ| <0.99 $),在二进制的假设是与二进制相处的量子,使其与之相处。

Estimating the source parameters of gravitational waves from compact binary coalescence(CBC) is a key analysis task in gravitational-wave astronomy. To deal with the increasing detection rate of CBC signals, optimizing the parameter estimation analysis is crucial. The analysis typically employs a stochastic sampling technique such as Markov Chain Monte Carlo(MCMC), where the source parameter space is explored and regions of high Bayesian posterior probability density are found. One of the bottlenecks slowing down the analysis is the non-trivial correlation between masses and spins of colliding objects, which makes the exploration of mass$\unicode{x2013}$spin space extremely inefficient. We introduce a new set of mass$\unicode{x2013}$spin sampling parameters which makes the posterior distribution to be simple in the new parameter space, regardless of the true values of the parameters. The new parameter combinations are obtained as the principal components of the Fisher matrix for the restricted 1.5 post-Newtonian waveform. Our re-parameterization improves the efficiency of MCMC by a factor of $\sim10$ for binary neutron star with narrow-spin prior ($|\vecχ|<0.05$) and $\sim100$ with broad-spin prior ($|\vecχ|<0.99$), under the assumption that the binary has spins aligned with its orbital angular momentum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源