论文标题

高曲率高能量的非制作凸式凸式凸旧解决方案

Non-homothetic convex ancient solutions for flows by high powers of curvature

论文作者

Risa, Susanna, Sinestrari, Carlo

论文摘要

我们证明存在封闭的古代解决方案,这些解决方案对于曲率流,对于大型负时,它们变得越来越椭圆形。速度函数是主曲线的一般对称函数,该度的均质大于一个。这概括了先前的曲率流量和其他单均匀曲率流的工作。作为辅助结果,我们证明了关于汇聚到凸旋转点的旋转点的新定理,可以满足曲线的适当约束。

We prove the existence of closed convex ancient solutions to curvature flows which become more and more oval for large negative times. The speed function is a general symmetric function of the principal curvatures, homogeneous of degree greater than one. This generalises previous work on the mean curvature flow and other one-homogeneous curvature flows. As an auxiliary result, we prove a new theorem on the convergence to a round point of convex rotationally symmetric hypersurfaces satisfying a suitable constraint on the curvatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源