论文标题

Equivariant $ \ useverline {\ Mathbb {z}/\ ell} $ - 环状组的模块$ C_2 $

Equivariant $\underline{\mathbb{Z}/\ell}$-modules for the cyclic group $C_2$

论文作者

Dugger, Daniel, Hazel, Christy, May, Clover

论文摘要

对于循环组$ c_2 $,我们对常数mackey环$ \ useverline {\ mathbb {z}/\ ell} $的完美模块的派生类别进行完整描述,对于$ \ ell $ a prime。对于$ \ ell $奇数来说,这很简单,但是对于$ \ ell = 2 $,这取决于新的分裂定理。作为拆分定理的推论,我们计算了相关的PICARD组和Balmer Spectrum,用于派生类别中的紧凑型物体,并在$ C_2 $ -CO_2 $ -EQUIVARIANT EILENBERG--MACLANE SPEMERRUM $ H \下列有限模块上获得了有限模块的完整分类。我们还使用拆分定理给出了有关$ RO(C_2)$的一些事实的新的启发性证据,即渐变的Bredon共同体,即Kronholm的FreeNess定理和C. May的结构定理。

For the cyclic group $C_2$ we give a complete description of the derived category of perfect complexes of modules over the constant Mackey ring $\underline{\mathbb{Z}/\ell}$, for $\ell$ a prime. This is fairly simple for $\ell$ odd, but for $\ell=2$ depends on a new splitting theorem. As corollaries of the splitting theorem we compute the associated Picard group and the Balmer spectrum for compact objects in the derived category, and we obtain a complete classification of finite modules over the $C_2$-equivariant Eilenberg--MacLane spectrum $H\underline{\mathbb{Z}/2}$. We also use the splitting theorem to give new and illuminating proofs of some facts about $RO(C_2)$-graded Bredon cohomology, namely Kronholm's freeness theorem and the structure theorem of C. May.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源