论文标题

自我Tune:通过自我监督学习的指标缩放的单眼深度估计

SelfTune: Metrically Scaled Monocular Depth Estimation through Self-Supervised Learning

论文作者

Choi, Jaehoon, Jung, Dongki, Lee, Yonghan, Kim, Deokhwa, Manocha, Dinesh, Lee, Donghwan

论文摘要

野生中的单眼深度估计固有地将深度预测到未知量表。为了解决规模的歧义问题,我们提出了一种学习算法,该算法利用单眼同时定位和映射(SLAM),并使用本体感受传感器。这样的单眼大满贯系统可以提供指标缩放的相机姿势。鉴于这些度量姿势和单眼序列,我们为预训练的监督的单眼深度网络提出了一种自制的学习方法,以实现指标缩放的深度估计。我们的方法是基于教师学生的表述,该公式指导我们的网络预测高质量的深度。我们证明我们的方法对各种应用程序(例如移动机器人导航)有用,并且适用于各种环境。我们的完整系统显示了对Euroc,Openloris和Scannet数据集的最新自我监管深度估计和完成方法的改进。

Monocular depth estimation in the wild inherently predicts depth up to an unknown scale. To resolve scale ambiguity issue, we present a learning algorithm that leverages monocular simultaneous localization and mapping (SLAM) with proprioceptive sensors. Such monocular SLAM systems can provide metrically scaled camera poses. Given these metric poses and monocular sequences, we propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation. Our approach is based on a teacher-student formulation which guides our network to predict high-quality depths. We demonstrate that our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments. Our full system shows improvements over recent self-supervised depth estimation and completion methods on EuRoC, OpenLORIS, and ScanNet datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源