论文标题

$ V(ρ)$分支的注释

A note on branching of $V(ρ)$

论文作者

Nadimpalli, Santosh, Pattanayak, Santosha

论文摘要

令$ \ mathfrak {g} $为一个复杂的简单谎言代数,让$ \ mathfrak {g} _0 $为$ \ mathfrak {g} $的图表自动形态固定的子algebra。让$ g $成为复杂,简单连接的,简单的代数群,带有lie代数$ \ mathfrak {g} $,让$ g_0 $为$ g $的连接子组,带有lie algebra $ \ mathfrak {g} _0 $。令$ρ$为$ \ mathfrak {g} $的正根的一半。在本文中,我们给出了最高重量$ \ mathfrak {g} _0 $ -presentation $ v_0(dμ)$的必要条件

Let $\mathfrak{g}$ be a complex simple Lie algebra and let $\mathfrak{g}_0$ be the sub-algebra fixed by a diagram automorphism of $\mathfrak{g}$. Let $G$ be the complex, simply-connected, simple algebraic group with Lie algebra $\mathfrak{g}$, and let $G_0$ be the connected subgroup of $G$ with Lie algebra $\mathfrak{g}_0$. Let $ρ$ be the half sum of positive roots of $\mathfrak{g}$. In this article, we give a necessary and sufficient condition for a highest weight $\mathfrak{g}_0$-representation $V_0(dμ)$ to occur in the representation ${\rm res}_{\mathfrak{g}_0}V(dρ)$, for any saturation factor $d$ of the pair $(G_0, G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源