论文标题
相对常规的Riemann-Hilbert对应II
Relative Regular Riemann-Hilbert correspondence II
论文作者
论文摘要
我们开发了相对规则的自动型D模块的理论,具有任意维度作为参数空间的平滑复杂歧管及其主要功能特性的理论。特别是,我们在这种一般环境中建立了相对的riemann-hilbert对应,在一维情况下以前的工作证明了相对的对应。
We develop the theory of relative regular holonomic D-modules with a smooth complex manifold S of arbitrary dimension as parameter space, together with their main functorial properties. In particular, we establish in this general setting the relative Riemann-Hilbert correspondence proved in a previous work in the one-dimensional case.