论文标题

量子边缘对应关系和量子Cuntz-Krieger代数

Quantum edge correspondences and quantum Cuntz-Krieger algebras

论文作者

Brannan, Michael, Hamidi, Mitch, Ismert, Lara, Nelson, Brent, Wasilewski, Mateusz

论文摘要

给定一个量子图$ \ MATHCAL {g} =(b,ψ,a)$,我们在非交换Vertex c*-algebra $ b $上定义了a c*-correspess $ e_ \ nathcal {g} $,称为量子边缘通讯。对于经典图形$ \ MATHCAL {g} $,$ e_ \ Mathcal {g} $是$ \ Mathcal {G} $的边缘所跨越的通常图形通信。当量子邻接矩阵$ a \ colon b \ to b $完全阳性时,我们表明$ e_ \ mathcal {g} $在且仅当$ \ ker(a)$中不包含$ b $的中心总汇总时。 In this case, we show that the Cuntz-Pimsner algebra $\mathcal{O}_{E_\mathcal{G}}$ is isomorphic to a quotient of the quantum Cuntz-Krieger algebra $\mathcal{O}(\mathcal{G})$ defined by Brannan, Eifler, Voigt, and Weber.此外,商映射的内核被证明是由量子cuntz-krieger关系的“局部”版本生成的,$ \ Mathcal {o} _ {e_ \ Mathcal {g}} $显示为与这些本地关系相关的通用对象。我们详细研究一些具体的例子,并与Exel交叉产品理论建立联系。

Given a quantum graph $\mathcal{G}=(B,ψ,A)$, we define a C*-correspondence $E_\mathcal{G}$ over the noncommutative vertex C*-algebra $B$, called the quantum edge correspondence. For a classical graph $\mathcal{G}$, $E_\mathcal{G}$ is the usual graph correspondence spanned by the edges of $\mathcal{G}$. When the quantum adjacency matrix $A\colon B\to B$ is completely positive, we show that $E_\mathcal{G}$ is faithful if and only if $\ker(A)$ does not contain a central summand of $B$. In this case, we show that the Cuntz-Pimsner algebra $\mathcal{O}_{E_\mathcal{G}}$ is isomorphic to a quotient of the quantum Cuntz-Krieger algebra $\mathcal{O}(\mathcal{G})$ defined by Brannan, Eifler, Voigt, and Weber. Moreover, the kernel of the quotient map is shown to be generated by "localized" versions of the quantum Cuntz-Krieger relations, and $\mathcal{O}_{E_\mathcal{G}}$ is shown to be the universal object associated to these local relations. We study in detail some concrete examples and make connections with the theory of Exel crossed products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源