论文标题
在互联网边缘的DeLailitizatized光子深度学习
Delocalized Photonic Deep Learning on the Internet's Edge
论文作者
论文摘要
深度神经网络(DNNS)的进步正在改变科学技术。但是,最强大的DNN的计算需求不断增长,限制了智能手机和传感器等低功耗设备上的部署 - 同时向Things Internet(IoT)设备的同时转移来加速这种趋势。降低功耗的努力正在进行中,但是由于基质代数的能量消耗,即使对于包括神经形态,模拟记忆和光子网格在内的模拟方法,基本的瓶颈仍然存在。在这里,我们介绍并演示了一种新方法,该方法通过取消边缘设备上的重量记忆访问,从而大大降低了矩阵代数所需的能量,从而实现了数量级的能量和延迟降低。我们方法的核心是一个新概念,该概念将DNN分散为边缘设备上的DENN NN,以取下底座,光学加速的矩阵代数。使用硅光子智能收发器,我们在实验上证明了该方案称为Netcast,大大降低了能耗。我们证明了在光子饥饿的环境中的操作,具有40 AJ/倍数的光能,用于98.8%精确的图像识别,使用单个光子探测器<1 photon/乘。此外,我们展示了系统的现实部署,在波士顿地区光纤网络中,用超过86公里的部署光纤进行了3 THZ的带宽分类。我们的方法可以在新一代的边缘设备上进行计算,其速度可与现代数字电子和功耗相当,而现代数字电子和功耗较低。
Advances in deep neural networks (DNNs) are transforming science and technology. However, the increasing computational demands of the most powerful DNNs limit deployment on low-power devices, such as smartphones and sensors -- and this trend is accelerated by the simultaneous move towards Internet-of-Things (IoT) devices. Numerous efforts are underway to lower power consumption, but a fundamental bottleneck remains due to energy consumption in matrix algebra, even for analog approaches including neuromorphic, analog memory and photonic meshes. Here we introduce and demonstrate a new approach that sharply reduces energy required for matrix algebra by doing away with weight memory access on edge devices, enabling orders of magnitude energy and latency reduction. At the core of our approach is a new concept that decentralizes the DNN for delocalized, optically accelerated matrix algebra on edge devices. Using a silicon photonic smart transceiver, we demonstrate experimentally that this scheme, termed Netcast, dramatically reduces energy consumption. We demonstrate operation in a photon-starved environment with 40 aJ/multiply of optical energy for 98.8% accurate image recognition and <1 photon/multiply using single photon detectors. Furthermore, we show realistic deployment of our system, classifying images with 3 THz of bandwidth over 86 km of deployed optical fiber in a Boston-area fiber network. Our approach enables computing on a new generation of edge devices with speeds comparable to modern digital electronics and power consumption that is orders of magnitude lower.