论文标题

颗粒的需求量强烈不连续

Particles on Demand for flows with strong discontinuities

论文作者

Kallikounis, N. G., Dorschner, B., Karlin, I. V.

论文摘要

按需颗粒的动力学理论表述[B. Dorschner,F。Bösch和I. V. Karlin,{\ it phys。 Rev. Lett。} {\ bf 121},130602(2018)]用于模拟各种可压缩流,其密度,压力和速度的不连续性很强。对颗粒的原始配方进行了两种修改。首先,将颗粒种群投影的正规化与参考框架转换相结合,以提高稳定性和准确性。其次,实施了有限体积方案,可以严格控制质量,动量和能量节能。提出的模型通过一系列具有挑战性的可压缩流的一系列具有挑战性的一维基准,包括高超音速和近事件情况,Richtmyer-Meshkov的不稳定性,双重马赫反射和天体物理射流。在其他晶格玻尔兹曼样方法的局限性上展示了改性颗粒按需方法的出色性能。

Particles on Demand formulation of kinetic theory [B. Dorschner, F. Bösch and I. V. Karlin, {\it Phys. Rev. Lett.} {\bf 121}, 130602 (2018)] is used to simulate a variety of compressible flows with strong discontinuities in density, pressure and velocity. Two modifications are applied to the original formulation of the Particles on Demand method. First, a regularization by Grad's projection of particles populations is combined with the reference frame transformations in order to enhance stability and accuracy. Second, a finite-volume scheme is implemented which allows tight control of mass, momentum and energy conservation. The proposed model is validated with an array of challenging one- and two-dimensional benchmarks of compressible flows, including hypersonic and near-vacuum situations, Richtmyer-Meshkov instability, double Mach reflection and astrophysical jet. Excellent performance of the modified Particles on Demand method is demonstrated beyond the limitations of other lattice Boltzmann-like approaches to compressible flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源