论文标题

迈向宏观神经架构搜索较少的搜索

Towards Less Constrained Macro-Neural Architecture Search

论文作者

Lopes, Vasco, Alexandre, Luís A.

论文摘要

通过神经体系结构搜索(NAS)发现的网络在各种任务中实现了最先进的性能,超越了人为设计的网络。但是,大多数NAS方法都在很大程度上依赖于限制搜索的人类定义的假设:体系结构的外骨骼,层数,参数启发式和搜索空间。此外,常见的搜索空间由可重复的模块(单元格)组成,而不是通过设计整个体系结构(宏观搜索)来完全探索体系结构的搜索空间。强加这种约束需要深厚的人类专业知识,并将搜索限制为预定义的设置。在本文中,我们提出了LCMNA,该方法通过执行宏观搜索而不依赖于预定的启发式方法或有限的搜索空间,将NAS推向较少受约束的搜索空间。 LCMNA引入了NAS管道的三个组成部分:i)一种方法,该方法利用有关众所周知的体系结构的信息自主生成基于具有隐藏特性的加权定向图的复杂搜索空间的自主生成复杂的搜索空间,ii)一种进化搜索策略,一种进化的搜索策略,从scratch中产生完整的体系结构,以及scratch的整体构建,以及降低了构图的范围,以使其在构图中降低了构图的范围,并将其结合起来,并将其结合起来,并将其结合起来,并将其结合起来,并将其结合起来。功能。我们在13个不同的数据集中介绍了实验,表明LCMNA能够以最小的GPU计算和最先进的结果生成细胞和基于宏观的体系结构。更重要的是,我们对基于细胞和宏观设置的不同NAS组件的重要性进行了广泛的研究。可重复性的代码在https://github.com/vascolopes/lcmnas上公开。

Networks found with Neural Architecture Search (NAS) achieve state-of-the-art performance in a variety of tasks, out-performing human-designed networks. However, most NAS methods heavily rely on human-defined assumptions that constrain the search: architecture's outer-skeletons, number of layers, parameter heuristics and search spaces. Additionally, common search spaces consist of repeatable modules (cells) instead of fully exploring the architecture's search space by designing entire architectures (macro-search). Imposing such constraints requires deep human expertise and restricts the search to pre-defined settings. In this paper, we propose LCMNAS, a method that pushes NAS to less constrained search spaces by performing macro-search without relying on pre-defined heuristics or bounded search spaces. LCMNAS introduces three components for the NAS pipeline: i) a method that leverages information about well-known architectures to autonomously generate complex search spaces based on Weighted Directed Graphs with hidden properties, ii) an evolutionary search strategy that generates complete architectures from scratch, and iii) a mixed-performance estimation approach that combines information about architectures at initialization stage and lower fidelity estimates to infer their trainability and capacity to model complex functions. We present experiments in 13 different data sets showing that LCMNAS is capable of generating both cell and macro-based architectures with minimal GPU computation and state-of-the-art results. More, we conduct extensive studies on the importance of different NAS components in both cell and macro-based settings. Code for reproducibility is public at https://github.com/VascoLopes/LCMNAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源