论文标题
强大的激进Sylvester-Gallai定理用于四边形
Robust Radical Sylvester-Gallai Theorem for Quadratics
论文作者
论文摘要
我们证明了对二次多项式的Sylvester-Gallai型定理的鲁棒性概括,从而将结果推广到[S'20]中。更准确地说,给定一个参数$ 0 <δ\ leq 1 $和一个有限的集合$ \ mathcal {f} $是不可修复和成对独立的多项式学位的$ 2,我们说$ \ mathcal {f} $是$(δ,2)$ - 2)$ - 2)$ - radical sylvester-gallai for for任何$ - \ Mathcal {f} $,存在$δ(| \ Mathcal {f} | -1)$ polyenmials $ f_j $,以便$ | | \ mathrm {rad}(f_i,f_i,f_j)\ cap \ cap \ mathcal {f} | \ geq 3 $,即$ f_i,f_j $的激进分子包含第三个多项式。 在这项工作中,我们证明任何$(δ,2)$ - 激进的sylvester-gallai配置$ \ mathcal {f} $都必须具有低维度:那就是$ \ dim \ dim \ dim \ mathrm {span}(\ mathcal {f} f})
We prove a robust generalization of a Sylvester-Gallai type theorem for quadratic polynomials, generalizing the result in [S'20]. More precisely, given a parameter $0 < δ\leq 1$ and a finite collection $\mathcal{F}$ of irreducible and pairwise independent polynomials of degree at most 2, we say that $\mathcal{F}$ is a $(δ, 2)$-radical Sylvester-Gallai configuration if for any polynomial $F_i \in \mathcal{F}$, there exist $δ(|\mathcal{F}| -1)$ polynomials $F_j$ such that $|\mathrm{rad}(F_i, F_j) \cap \mathcal{F}| \geq 3$, that is, the radical of $F_i, F_j$ contains a third polynomial in the set. In this work, we prove that any $(δ, 2)$-radical Sylvester-Gallai configuration $\mathcal{F}$ must be of low dimension: that is $$\dim \mathrm{span}(\mathcal{F}) = \mathrm{poly}(1/δ).$$