论文标题

状态机器复制可伸缩性变得简单(扩展版本)

State-Machine Replication Scalability Made Simple (Extended Version)

论文作者

Stathakopoulou, Chrysoula, Pavlovic, Matej, Vukolić, Marko

论文摘要

共识,国家机器复制(SMR)和总订单广播(TOB)协议因参与节点的数量的可扩展性而臭名昭著。尽管最近的竞赛是降低由Leader驱动的SMR/TOB协议的总体消息复杂性,但可伸缩性仍然很差,并且吞吐量通常与节点数量成反比。我们提出了一种非常可扩展的状态机器复制,这是一种通用结构,可将领导者驱动的协议变成可扩展的多领导者。对于我们的可扩展SMR结构,我们使用了一种名为“测序(总顺序)广播(SB)的新颖原始构造,我们将其围绕PBFT,Hotstuff和Raft Leader驱动的协议来使其扩展。我们的构建足以容纳大多数由领导者驱动的订购协议(BFT或CFT),并使其扩展。我们的实施分别以128个节点的比例将PBFT,HOTSTUFF和RAFT的峰值吞吐量分别提高了37倍,56倍和55倍。

Consensus, state-machine replication (SMR) and total order broadcast (TOB) protocols are notorious for being poorly scalable with the number of participating nodes. Despite the recent race to reduce overall message complexity of leader-driven SMR/TOB protocols, scalability remains poor and the throughput is typically inversely proportional to the number of nodes. We present Insanely Scalable State-Machine Replication, a generic construction to turn leader-driven protocols into scalable multi-leader ones. For our scalable SMR construction we use a novel primitive called Sequenced (Total Order) Broadcast (SB) which we wrap around PBFT, HotStuff and Raft leader-driven protocols to make them scale. Our construction is general enough to accommodate most leader-driven ordering protocols (BFT or CFT) and make them scale. Our implementation improves the peak throughput of PBFT, HotStuff, and Raft by 37x, 56x, and 55x, respectively, at a scale of 128 nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源