论文标题

利用基于不确定性的半监督分段中的标签表示

Leveraging Labeling Representations in Uncertainty-based Semi-supervised Segmentation

论文作者

Adiga V, Sukesh, Dolz, Jose, Lombaert, Herve

论文摘要

半监督的分割通过利用未标记的数据和少量标记的数据来解决注释的稀缺性。利用未标记数据的一种突出方法是使用一致性培训,该培训通常使用教师的网络,教师指导学生细分。未标记数据的预测是不可靠的,因此,已经提出了不确定性感知的方法,以逐步从有意义且可靠的预测中学习。然而,不确定性估计取决于对每个训练步骤需要计算的模型预测的多种推论,这在计算上很昂贵。这项工作提出了一种新的方法来通过利用分割掩模的标签表示来估计像素级的不确定性。一方面,学会了标签表示形式来表示可用的分割面具。学习的标签表示形式用于将分割的预测映射到一组合理的面罩中。这样的重建分割掩模有助于估计像素级的不确定性指导分割网络。提出的方法通过标记表示的单个推断估算了不确定性,从而减少了总计算。我们评估了MRI中左心房3D分割的方法,我们表明我们的标签表示不确定性估计提高了对最新方法的分割精度。

Semi-supervised segmentation tackles the scarcity of annotations by leveraging unlabeled data with a small amount of labeled data. A prominent way to utilize the unlabeled data is by consistency training which commonly uses a teacher-student network, where a teacher guides a student segmentation. The predictions of unlabeled data are not reliable, therefore, uncertainty-aware methods have been proposed to gradually learn from meaningful and reliable predictions. Uncertainty estimation, however, relies on multiple inferences from model predictions that need to be computed for each training step, which is computationally expensive. This work proposes a novel method to estimate the pixel-level uncertainty by leveraging the labeling representation of segmentation masks. On the one hand, a labeling representation is learnt to represent the available segmentation masks. The learnt labeling representation is used to map the prediction of the segmentation into a set of plausible masks. Such a reconstructed segmentation mask aids in estimating the pixel-level uncertainty guiding the segmentation network. The proposed method estimates the uncertainty with a single inference from the labeling representation, thereby reducing the total computation. We evaluate our method on the 3D segmentation of left atrium in MRI, and we show that our uncertainty estimates from our labeling representation improve the segmentation accuracy over state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源