论文标题
终身使用原型网络的基于传感器的人类活动识别的自适应机器学习
Lifelong Adaptive Machine Learning for Sensor-based Human Activity Recognition Using Prototypical Networks
论文作者
论文摘要
持续学习,也称为终身学习,是一个新兴的研究主题,吸引了对机器学习领域的兴趣。随着人类活动识别(HAR)在实现众多现实应用程序方面发挥关键作用,长期部署此类识别系统的重要一步是扩展活动模型,以动态地适应人们日常行为的变化。当前应用于HAR领域的持续学习的研究仍然对探索用于HAR计算机视觉开发的现有方法的研究人员探索。此外,到目前为止,分析集中在已知任务边界的任务收入或班级学习范式上。由于数据以随机流方式显示,因此这阻碍了此类方法对现实世界系统的适用性。为了推动这一领域的向前发展,我们以连续机器学习和设计终身自适应学习框架的最新进展为基础,使用原型网络Lapnet-Har,该框架在无任务的数据收入时尚中处理基于传感器的数据流,并通过经验重播和连续的原型型适应性进行灾难性的遗忘。使用对比损失来进一步促进在线学习,以实施阶层间的分离。根据框架在保留先前的知识的同时获得新信息的能力,对5个公开活动数据集进行了Lapnet-Har的评估。我们广泛的经验结果证明了Lapnet-Har在无任务持续学习中的有效性,并发现了对未来挑战的有用见解。
Continual learning, also known as lifelong learning, is an emerging research topic that has been attracting increasing interest in the field of machine learning. With human activity recognition (HAR) playing a key role in enabling numerous real-world applications, an essential step towards the long-term deployment of such recognition systems is to extend the activity model to dynamically adapt to changes in people's everyday behavior. Current research in continual learning applied to HAR domain is still under-explored with researchers exploring existing methods developed for computer vision in HAR. Moreover, analysis has so far focused on task-incremental or class-incremental learning paradigms where task boundaries are known. This impedes the applicability of such methods for real-world systems since data is presented in a randomly streaming fashion. To push this field forward, we build on recent advances in the area of continual machine learning and design a lifelong adaptive learning framework using Prototypical Networks, LAPNet-HAR, that processes sensor-based data streams in a task-free data-incremental fashion and mitigates catastrophic forgetting using experience replay and continual prototype adaptation. Online learning is further facilitated using contrastive loss to enforce inter-class separation. LAPNet-HAR is evaluated on 5 publicly available activity datasets in terms of the framework's ability to acquire new information while preserving previous knowledge. Our extensive empirical results demonstrate the effectiveness of LAPNet-HAR in task-free continual learning and uncover useful insights for future challenges.