论文标题

一种热力学知识的主动学习方法,以了解流体

A Thermodynamics-informed Active Learning Approach to Perception and Reasoning about Fluids

论文作者

Moya, Beatriz, Badias, Alberto, Gonzalez, David, Chinesta, Francisco, Cueto, Elias

论文摘要

关于物理现象的学习和推理仍然是机器人开发中的挑战,计算科学在寻找能够为过去事件和对未来情况的严格预测提供解释的准确方法中发挥了资本作用。我们提出了一种热力学知识的主动学习策略,以从观察结果中进行流体感知和推理。作为模型问题,我们采用玻璃中包含的不同流体的晃动现象。从特定流体的全场和高分辨率合成数据开始,我们开发了一种跟踪(感知)和分析(推理)的方法,该方法对任何以前看不见的液体都可以使用商品摄像机观察到自由表面。这种方法不仅在数据驱动的(灰色框)建模中,而且在较低的数据制度和动力学的部分观察结果中对物理和知识的重要性进行了重要性。提出的方法可扩展到其他领域,例如认知数字双胞胎的发展,能够从未经明确训练的现象中学习。

Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events and rigorous forecasts of future situations. We propose a thermodynamics-informed active learning strategy for fluid perception and reasoning from observations. As a model problem, we take the sloshing phenomena of different fluids contained in a glass. Starting from full-field and high-resolution synthetic data for a particular fluid, we develop a method for the tracking (perception) and analysis (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera. This approach demonstrates the importance of physics and knowledge not only in data-driven (grey box) modeling but also in the correction for real physics adaptation in low data regimes and partial observations of the dynamics. The method presented is extensible to other domains such as the development of cognitive digital twins, able to learn from observation of phenomena for which they have not been trained explicitly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源