论文标题
通过最大化过滤器品种来改善卷积神经网络修剪
Improve Convolutional Neural Network Pruning by Maximizing Filter Variety
论文作者
论文摘要
神经网络修剪是一种用于减少模型存储和计算要求的广泛使用的策略。它可以通过在权重中引入稀疏性来降低网络的复杂性。由于利用稀疏的矩阵仍然具有挑战性,因此通常以结构化的方式进行修剪,即在Convnets的情况下删除整个卷积过滤器。常见的修剪标准(例如L1 - 纳米或运动)通常不考虑过滤器的个体效用,这可能会导致:(1)删除表现出罕见的过滤器,因此重要的和歧视性的行为,以及(2)保留过滤器,具有冗余信息。在本文中,我们提出了一种解决这两个问题的技术,可以将其附加到任何修剪标准上。该技术可确保选择标准集中在冗余过滤器上,同时保留稀有过滤器,从而最大程度地提高剩余过滤器的种类。在不同数据集(CIFAR-10,CIFAR-100和CALTECH-101)上进行的实验结果,并使用不同的体系结构(VGG-16和RESNET-18)表明,在将我们的滤波选择技术添加到监督标准时,可以达到相似的稀疏水平,同时保持较高的性能。此外,我们通过应用彩票假设来评估发现的稀疏子网络的质量,并发现我们的方法的添加允许在大多数情况下发现更好的性能票
Neural network pruning is a widely used strategy for reducing model storage and computing requirements. It allows to lower the complexity of the network by introducing sparsity in the weights. Because taking advantage of sparse matrices is still challenging, pruning is often performed in a structured way, i.e. removing entire convolution filters in the case of ConvNets, according to a chosen pruning criteria. Common pruning criteria, such as l1-norm or movement, usually do not consider the individual utility of filters, which may lead to: (1) the removal of filters exhibiting rare, thus important and discriminative behaviour, and (2) the retaining of filters with redundant information. In this paper, we present a technique solving those two issues, and which can be appended to any pruning criteria. This technique ensures that the criteria of selection focuses on redundant filters, while retaining the rare ones, thus maximizing the variety of remaining filters. The experimental results, carried out on different datasets (CIFAR-10, CIFAR-100 and CALTECH-101) and using different architectures (VGG-16 and ResNet-18) demonstrate that it is possible to achieve similar sparsity levels while maintaining a higher performance when appending our filter selection technique to pruning criteria. Moreover, we assess the quality of the found sparse sub-networks by applying the Lottery Ticket Hypothesis and find that the addition of our method allows to discover better performing tickets in most cases