论文标题
符合性细胞机器人的机械表征。第一部分:被动僵硬
Mechanical Characterization of Compliant Cellular Robots. Part I: Passive Stiffness
论文作者
论文摘要
模块化活跃的细胞机器人(宏)是模块化机器人硬件的设计范式,仅使用两个组件,即执行器和被动的关节。在宏观方法下,大量的致动器和关节连接起来,创建了网状的细胞机器人结构,这些结构可以被驱动以实现较大的变形和形状变化。在这本两部分的论文中,我们研究了宏观框架中不同可能的网格拓扑的重要性。平面的常规和半规则砖用于候选网格拓扑,并使用有限元分析(FEA)模拟。在第1部分中,我们使用FEA评估其被动僵硬特性。使用应变能法,计算和比较了不同网格拓扑的均质化材料特性(Young的模量,剪切模量和泊松比)。结果表明,与弯曲主导的阵地相比,刚度随结节连通性的增加而增加,并且伸展主导的拓扑具有更高的刚度。我们还研究了相对执行器节点刚度对整体网格特性的作用。该分析表明,拉伸主导拓扑的刚度直接及其横截面区域,而弯曲为主的区域则没有这种直接关系。
Modular Active Cell Robots (MACROs) are a design paradigm for modular robotic hardware that uses only two components, namely actuators and passive compliant joints. Under the MACRO approach, a large number of actuators and joints are connected to create mesh-like cellular robotic structures that can be actuated to achieve large deformation and shape-change. In this two-part paper, we study the importance of different possible mesh topologies within the MACRO framework. Regular and semi-regular tilings of the plane are used as the candidate mesh topologies and simulated using Finite Element Analysis (FEA). In Part 1, we use FEA to evaluate their passive stiffness characteristics. Using a strain energy method, the homogenized material properties (Young's modulus, shear modulus, and Poisson's ratio) of different mesh topologies are computed and compared. The results show that the stiffnesses increase with increasing nodal connectivity and that stretching-dominated topologies have higher stiffness compared to bending-dominated ones. We also investigate the role of relative actuator-node stiffness on the overall mesh characteristics. This analysis shows that the stiffness of stretching-dominated topologies scale directly with their cross-section area whereas the bending-dominated ones do not have such a direct relationship.