论文标题
基于HTS的快速循环超导加速器磁铁:可行性研究和准备性演示计划,由中微子物理和MUON撞机需求驱动
Fast cycling HTS based superconducting accelerator magnets: Feasibility study and readiness demonstration program driven by neutrino physics and muon collider needs
论文作者
论文摘要
节能快速循环加速器磁铁的开发对于下微中微子研究的下一代质子快速循环同步激素(RCS)至关重要。我们看到了在高温超导体(HTS)基础上建造此类磁铁的独特机会。除了在相对较高的温度下进行超导外,与低温NBTI超导电缆相比,稀土HTS磁带显示出非常小的AC损失。最近对基于HTS的0.5 m长的两孔超导加速器磁铁的测试显示,以10 Hz的重复速率和0.5 t t b-field跨度为10 Hz的高DB/DT斜坡速率约为300 t/s。在6 K冷却中没有温度升高,在0.003 K误差中观察到磁体导体线圈中低温功率损失的上限小于0.2 w/m。基于此结果,我们概述了该测试磁铁设计的可能升级到10 mm梁间隙中的2 t b场,而DB/DT斜坡速率最高为1000 t/s。该短样品磁铁的功率测试结果将用于投射低温和电力损耗,这是磁铁B场和DB/DT斜坡速率的函数。然后,这些投影将缩放到质子和MUON RCS加速器的预期加速器磁铁束间隙和B场的范围。我们邀请合作者加入这些研究,并呼吁支持研发计划,旨在全面证明这种方法,其中包括设计,构造和功率测试的长期原型,该原型是基于HTS的快速循环加速器到2028年。
Development of energy-efficient fast cycling accelerator magnets is critical for the next generation of proton rapid cycling synchrotrons (RCS) for neutrino research and booster accelerators of future muon colliders. We see a unique opportunity for having such magnets to be built on base of High Temperature Superconductors (HTS). Besides being superconducting at relatively high temperatures, rare-earth HTS tapes have shown very small AC losses compared to low-temperature NbTi superconductor cables. Recent tests of the HTS-based 0.5 m long two-bore superconducting accelerator magnet have shown record high dB/dt ramping rates of about 300 T/s at 10 Hz repetition rate and 0.5 T B-field span. No temperature rise in 6 K cooling He was observed within the 0.003 K error setting the upper limit on the cryogenic power loss in the magnet conductor coil to be less than 0.2 W/m. Based on this result we outline a possible upgrade of this test magnet design to 2 T B-field in the 10 mm beam gap with the dB/dt ramping rates up to 1000 T/s. The power test results of this short sample magnet will be used to project both cryogenic and electrical power losses as a function of the magnet B-field and the dB/dt ramping rates. Then these projections will be scaled to the range of expected accelerator magnet beam gaps and B-fields for the proton and muon RCS accelerators. We invite collaborators to join these studies and call for support of the R&D program aimed at comprehensive demonstration of this approach that includes design, construction, and power tests of a long prototype of the HTS-based fast-cycling accelerator magnet by 2028.