论文标题
随时间的随机准最佳局部近似空间
Randomized quasi-optimal local approximation spaces in time
论文作者
论文摘要
我们针对时间和时间上有异质系数的时间依赖性偏微分方程(PDE)。为了解决这些问题,我们构建了在空间中定义的减少基础/多尺度ANSATZ函数,这些功能可以与模型订单降低或多尺度方法中的时间步进方案结合使用。为此,我们提议在几个时间步长的几个时间步骤中进行几个模拟,从不同的,随机绘制的起始点开始,以规定随机的初始条件。将单数值分解应用于SO获得的快照的一个子集可产生降低的基础/多尺度ANSATZ函数。这有助于以令人尴尬的并行方式构建减少的基础/多尺度ANSATZ的功能。详细说明,我们建议使用基于PDE的数据功能的数据依赖性概率分布来选择起始点。在随机初始条件下对PDE的每个局部时间模拟都在一个时间点上近似于局部近似空间,而Kolmogorov的意义是最佳的。这些最佳的局部近似空间的推导是由紧凑型传输操作员的左单数向量跨越的,该向量将任意初始条件映射到后来的PDE解决方案,这是本文的另一个主要贡献。通过在随机初始条件下及时求解PDE,我们可以及时构建本地ANSATZ空间,该空间以准最佳速率收敛并允许局部误差控制。数值实验表明,即使在连续的环境中,提出的方法也可以胜过现有的方法,例如正交分解,并且能够很好地近似为对流为主的问题。
We target time-dependent partial differential equations (PDEs) with heterogeneous coefficients in space and time. To tackle these problems, we construct reduced basis/ multiscale ansatz functions defined in space that can be combined with time stepping schemes within model order reduction or multiscale methods. To that end, we propose to perform several simulations of the PDE for few time steps in parallel starting at different, randomly drawn start points, prescribing random initial conditions; applying a singular value decomposition to a subset of the so obtained snapshots yields the reduced basis/ multiscale ansatz functions. This facilitates constructing the reduced basis/ multiscale ansatz functions in an embarrassingly parallel manner. In detail, we suggest using a data-dependent probability distribution based on the data functions of the PDE to select the start points. Each local in time simulation of the PDE with random initial conditions approximates a local approximation space in one time point that is optimal in the sense of Kolmogorov. The derivation of these optimal local approximation spaces which are spanned by the left singular vectors of a compact transfer operator that maps arbitrary initial conditions to the solution of the PDE in a later point of time, is one other main contribution of this paper. By solving the PDE locally in time with random initial conditions, we construct local ansatz spaces in time that converge provably at a quasi-optimal rate and allow for local error control. Numerical experiments demonstrate that the proposed method can outperform existing methods like the proper orthogonal decomposition even in a sequential setting and is well capable of approximating advection-dominated problems.