论文标题

自动FEDRL:用于多机构医学图像分割的联合次数超参数优化

Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation

论文作者

Guo, Pengfei, Yang, Dong, Hatamizadeh, Ali, Xu, An, Xu, Ziyue, Li, Wenqi, Zhao, Can, Xu, Daguang, Harmon, Stephanie, Turkbey, Evrim, Turkbey, Baris, Wood, Bradford, Patella, Francesca, Stellato, Elvira, Carrafiello, Gianpaolo, Patel, Vishal M., Roth, Holger R.

论文摘要

联合学习(FL)是一种分布式机器学习技术,可以在避免明确的数据共享的同时进行协作模型培训。 FL算法的固有保护属性使其对医疗领域特别有吸引力。但是,如果有异质的客户数据分布,则标准FL方法是不稳定的,需要密集的高参数调整以实现最佳性能。在现实世界中,传统的超参数优化算法是不切实际的,因为它们涉及大量的培训试验,而计算预算有限,这些试验通常是不起作用的。在这项工作中,我们提出了一种有效的加强学习(RL)的联合体参数优化算法,称为自动FEDRL,其中在线RL代理可以根据当前的培训进度动态调整每个客户端的超参数。进行了广泛的实验以研究不同的搜索策略和RL代理。在CIFAR-10数据集的异质数据拆分以及两个现实世界中的医学图像分割数据集上,用于在胸部CT和胰腺CT中的胰腺细分中进行了两个现实世界的医学图像分割数据集验证了所提出方法的有效性。

Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing. The inherent privacy-preserving property of FL algorithms makes them especially attractive to the medical field. However, in case of heterogeneous client data distributions, standard FL methods are unstable and require intensive hyperparameter tuning to achieve optimal performance. Conventional hyperparameter optimization algorithms are impractical in real-world FL applications as they involve numerous training trials, which are often not affordable with limited compute budgets. In this work, we propose an efficient reinforcement learning (RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL, in which an online RL agent can dynamically adjust hyperparameters of each client based on the current training progress. Extensive experiments are conducted to investigate different search strategies and RL agents. The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset as well as two real-world medical image segmentation datasets for COVID-19 lesion segmentation in chest CT and pancreas segmentation in abdominal CT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源