论文标题

及时链接:链接大型语言模型通过视觉编程提示

PromptChainer: Chaining Large Language Model Prompts through Visual Programming

论文作者

Wu, Tongshuang, Jiang, Ellen, Donsbach, Aaron, Gray, Jeff, Molina, Alejandra, Terry, Michael, Cai, Carrie J

论文摘要

尽管LLM可以有效地帮助原型单个ML功能,但许多现实世界应用程序涉及复杂的任务,这些任务无法通过LLM的单个运行轻松处理。最近的工作发现,将多个LLM链接在一起(一个步骤的输出是下一个输入)可以帮助用户完成这些更复杂的任务,并且以一种被认为更透明和可控制的方式。但是,在创建自己的LLM链时,用户需要什么 - 降低非AI-Experts障碍的关键步骤,这是AI INSUDENS INSUD INSUDENS INFUSE的应用程序的关键步骤。在这项工作中,我们探讨了LLM链创作过程。我们从试点研究中得出结论,链接需要仔细的脚手架来转换中间节点输出,并以多种粒度调试链。为了帮助满足这些需求,我们设计了及时链接,这是一种用于视觉编程链的交互式界面。通过与四个人的案例研究,我们表明迅速链链支持为一系列应用的构建原型,并以对将链条扩展到复杂任务的开放性问题,并支持低保真链条原型制作。

While LLMs can effectively help prototype single ML functionalities, many real-world applications involve complex tasks that cannot be easily handled via a single run of an LLM. Recent work has found that chaining multiple LLM runs together (with the output of one step being the input to the next) can help users accomplish these more complex tasks, and in a way that is perceived to be more transparent and controllable. However, it remains unknown what users need when authoring their own LLM chains -- a key step for lowering the barriers for non-AI-experts to prototype AI-infused applications. In this work, we explore the LLM chain authoring process. We conclude from pilot studies find that chaining requires careful scaffolding for transforming intermediate node outputs, as well as debugging the chain at multiple granularities; to help with these needs, we designed PromptChainer, an interactive interface for visually programming chains. Through case studies with four people, we show that PromptChainer supports building prototypes for a range of applications, and conclude with open questions on scaling chains to complex tasks, and supporting low-fi chain prototyping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源