论文标题
由于氧化铜中的列中超导相波动而引起的巨大横向磁路
Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide
论文作者
论文摘要
在所有主要的库酸酯超导体家族中,已经通过一系列实验技术(电子拉曼散射,THZ二分性能,导热率,扭矩磁力测定法,第二键型生成生成)检测到电子各向异性(或“ nematicity”),并通过扫描隧道隧道显微镜(Stm)直接可视化。使用角度分辨的横向电阻(ARTR)测量值,这是一种非常敏感且无背景的技术,可以检测到运输的0.5 $ \%$ anisotropy,我们也观察到了它在la $ _ {2-x} $ sr $ _ {2-x} $ _ {x} $ cuo $ _ {4} $ 0.002 $ 0.02 $ 0.02 $ 0.02 $ 0.02 $中。可以说,LSCO中的关键谜团是列型主管随温度的旋转。以前在任何材料中都没有看到这种情况。在这里,我们通过测量LSCO中的角度分辨横向磁磁(ARTMR)来解决这个难题。我们报告发现巨大的横向磁磁性(CTMR) - 磁场$ 6 \,$ t的横向电阻率下降的顺序下降,而在纵向电阻率中则看不见。我们表明,列直系主管的明显旋转是由超导相位波动引起的,这比正常电子流体更为各向异性,其各自的董事不相似。这个定性的结论是鲁棒的,并且从原始的实验数据中直接遵循。我们通过通过对应于不同各向异性drude和Cooper Pair Pair有效的质量张量对应的两个导电通道的总和来对其进行量化。令人惊讶的是,库珀对刚度的各向异性明显大于正常电子的各向异性,并且它在不足的一侧生长,在这种情况下,波动有效地变为准尺寸。
Electronic anisotropy (or `nematicity') has been detected in all main families of cuprate superconductors by a range of experimental techniques -- electronic Raman scattering, THz dichroism, thermal conductivity, torque magnetometry, second-harmonic generation -- and was directly visualized by scanning tunneling microscope (STM) spectroscopy. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5$\%$ anisotropy in transport, we have observed it also in La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO) for $0.02 \leq x \leq 0.25$. Arguably the key enigma in LSCO is the rotation of the nematic director with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report a discovery of colossal transverse magnetoresistance (CTMR) -- an order-of-magnitude drop in the transverse resistivity in the magnetic field of $6\,$T, while none is seen in the longitudinal resistivity. We show that the apparent rotation of the nematic director is caused by superconducting phase fluctuations, which are much more anisotropic than the normal-electron fluid, and their respective directors are not parallel. This qualitative conclusion is robust and follows straight from the raw experimental data. We quantify this by modelling the measured (magneto-)conductivity by a sum of two conducting channels that correspond to distinct anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is significantly larger than that of the normal electrons, and it grows dramatically on the underdoped side, where the fluctuations become effectively quasi-one dimensional.