论文标题
具有毛细管边界高空曲面的Heintze-Karcher类型不等式
A Heintze-Karcher type inequality for hypersurfaces with capillary boundary
论文作者
论文摘要
在本文中,我们通过使用解决方案在Reilly Type公式中使用解决方案,在半空间或半球中为具有接触角$θ\ in(0,\fracπ{2})$的毛细管边界$θ\建立Heintze-Karcher型不平等。因此,我们为Alexandrov Type定理提供了新的证明,用于嵌入式毛细管常数平均曲率曲面,其接触角$θ\ in(0,\fracπ{2})$在半空间或半球中。
In this paper, we establish a Heintze-Karcher type inequality for hypersurfaces with capillary boundary of contact angle $θ\in (0,\fracπ{2})$ in a half space or a half ball, by using solution to a mixed boundary value problem in Reilly type formula. Consequently, we give a new proof of Alexandrov type theorem for embedded capillary constant mean curvature hypersurfaces with contact angle $θ\in (0,\fracπ{2})$ in a half space or a half ball.