论文标题
半串联生物聚合物网络的微观机械响应中的非线性主关系
Nonlinear master relation in microscopic mechanical response of semiflexible biopolymer networks
论文作者
论文摘要
一个被称为细胞骨架和分子电动机的半灵性生物聚合物网络在细胞活性中起着基本的机械作用。分子电动机产生的力的细胞骨架反应与生理过程深远有关。然而,由于高度非线性的机械性能,微观水平上的细胞骨架反应在很大程度上难以捉摸。这项研究的目的是通过进行微流变学(MR)实验来研究半融合生物聚合物网络的微观机械响应。通过使用反馈控制的光学捕获,在各种条件下,在各种条件下,嵌入了半融合生物聚合物网络中的微米大小的胶体颗粒被迫超越线性状态。这种高带宽MR技术揭示了仿射弹性反应,该反应显示在局部强迫时僵硬。在缩放僵硬的行为之后,使用了描述半虚拟网络的参数,观察到对单个主曲线的崩溃。提出了一般显微镜反应的基础物理学以证明崩溃的合理性,并讨论了其对细胞力学的潜力/影响。
A network of semiflexible biopolymers, known as the cytoskeleton, and molecular motors play fundamental mechanical roles in cellular activities. The cytoskeletal response to forces generated by molecular motors is profoundly linked to physiological processes. However, owing to the highly nonlinear mechanical properties, the cytoskeletal response on the microscopic level is largely elusive. The aim of this study is to investigate the microscopic mechanical response of semiflexible biopolymer networks by conducting microrheology (MR) experiments. Micrometer-sized colloidal particles, embedded in semiflexible biopolymer networks, were forced beyond the linear regime at a variety of conditions by using feedback-controlled optical trapping. This high-bandwidth MR technology revealed an affine elastic response, which showed stiffening upon local forcing. After scaling the stiffening behaviors, with parameters describing semi-flexible networks, a collapse onto a single master curve was observed. The physics underlying the general microscopic response is presented to justify the collapse, and its potentials/implications to elucidate cell mechanics is discussed.