论文标题
与Abelian最大等级的作用的紧凑型Kähler三倍的高度最小模型程序的存在
Existence of the equivariant minimal model program for compact Kähler threefolds with the action of an abelian group of maximal rank
论文作者
论文摘要
令$ x $为$ \ mathbb {q} $ - fortorial compactkählerklt三倍,承认免费的Abelian Group $ g $的动作,该动作是积极的熵和最大等级。在运行$ G $ equivariant日志最小模型程序之后,我们表明这种$ x $是合理连接的,或者是$ q $ complex torus。特别是,我们在以前的论文证明中解决了一个问题。
Let $X$ be a $\mathbb{Q}$-factorial compact Kähler klt threefold admitting an action of a free abelian group $G$, which is of positive entropy and of maximal rank. After running the $G$-equivariant log minimal model program, we show that such $X$ is either rationally connected or bimeromorphic to a $Q$-complex torus. In particular, we fix an issue in the proof of our previous paper.