论文标题

关于Min-Max潜伏期多机器人巡逻问题的循环解决方案

On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

论文作者

Afshani, Peyman, de Berg, Mark, Buchin, Kevin, Gao, Jie, Loffler, Maarten, Nayyeri, Amir, Raichel, Benjamin, Sarkar, Rik, Wang, Haotian, Yang, Hao-Tsung

论文摘要

我们考虑以下监视问题:鉴于$ n $ n $ sites的$ p $在公制空间中的$ n $站点,以及一组具有相同最大速度的$ k $机器人,请计算机器人最小延迟的巡逻时间表。在这里,巡逻时间表为每个机器人指定了一个无限的站点序列(按给定的顺序),并且时间表的延迟$ l $是任何站点的最大延迟,其中站点$ s $的延迟是连续访问到$ s $ $ s $之间时间间隔之间长度的最高时间。当$ k = 1 $时,问题等同于旅行推销员问题(TSP),因此是NP-HARD。我们有两个主要结果。我们考虑必须将一组站点分为$ \ ell $组的循环解决方案,对于某些〜$ \ ell \ leq k $,并且为每个组分配了一个机器人的子集,这些机器人沿着小组的旅行人员沿着相同距离的距离沿着相同的距离进行。我们的第一个主要结果是,可以减少近似循环解决方案类别的最佳延迟,以在某些输入中近似最佳的旅行推销员巡回演出,而近似值中只有$ 1+\ varepsilon $因子损失因子和$ o \ weft(\ weft(\ weft)(\ wearpsilon \ right \ right)$ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0 $ 0。我们的第二个主要结果表明,最佳循环解决方案是$ 2(1-1/k)$ - 总体最佳解决方案的近似。请注意,对于$ k = 2 $,这意味着最佳的循环解决方案总体上是最佳的。结果有许多后果。例如,对于问题的欧几里得版,将我们的结果与欧几里得TSP上的已知结果结合起来,产生了近似最佳环状溶液的PTA,并且产生了$(2(1-1/K)+\ varepsilon)$ - 最佳无限制解决方案的近似值。如果上述猜想是正确的,那么我们的算法实际上是欧几里得环境中一般问题的PTA。

We consider the following surveillance problem: Given a set $P$ of $n$ sites in a metric space and a set of $k$ robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency $L$ of a schedule is the maximum latency of any site, where the latency of a site $s$ is the supremum of the lengths of the time intervals between consecutive visits to $s$. When $k=1$ the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into $\ell$ groups, for some~$\ell \leq k$, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a $1+\varepsilon$ factor loss in the approximation factor and an $O\left(\left( k/\varepsilon \right)^k\right)$ factor loss in the runtime, for any $\varepsilon >0$. Our second main result shows that an optimal cyclic solution is a $2(1-1/k)$-approximation of the overall optimal solution. Note that for $k=2$ this implies that an optimal cyclic solution is optimal overall. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a $(2(1-1/k)+\varepsilon)$-approximation of the optimal unrestricted solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源