论文标题
用于实验的Schrieffer-Wolff转换:在费米 - 哈伯德模拟器中动态抑制虚拟Doubleon-Hole激励
Schrieffer-Wolff Transformations for Experiments: Dynamically Suppressing Virtual Doublon-Hole Excitations in a Fermi-Hubbard Simulator
论文作者
论文摘要
在具有分离能量尺度的强烈相互作用的系统中,低能量有效的汉密尔顿人有助于对低温下相关物理的见解。有效模型中的紧急相互作用是由高能量状态的虚拟激发介导的:例如,费米 - 哈伯德模型中的虚拟doublon-hole激发介导了反触电磁性自旋交互中的衍生有效模型,称为$ t-j-j-3s $模型。正式地,通过执行统一的Schrieffer-Wolff基础转换来描述此过程。在量子模拟的背景下,考虑有效的模型来解释实验结果可能是有利的。但是,诸如Doublon-Hole对等虚拟激发可以混淆物理可观察物的测量。在这里,我们表明量子模拟器允许人们通过旋转进行测量来更直接地访问有效模型。我们提出了一项方案,以在费米 - 哈伯德低能量特征状态(或热状态)上执行Schrieffer-Wolff转换,以动态制备近似于$ t-j-3s $模型态在光学晶格中的费米原子。我们的协议涉及执行光学晶格深度的线性坡道,该坡道足够缓慢,可以消除虚拟doublon-hole波动,但足够快以冻结有效模型中的动力学。我们使用精确的对角度进行数值研究,并找到一个最佳的坡道速度,该状态在晶格坡道后的状态与$ t-j-3s $模型状态具有最大的重叠。我们将数字与来自锂6费米子量子气体显微镜的实验数据进行比较,并显示了该方案的原则证明。更一般而言,该方案可以通过在广泛的量子模拟实验中抑制虚拟激发来对有效模型的研究有益。
In strongly interacting systems with a separation of energy scales, low-energy effective Hamiltonians help provide insights into the relevant physics at low temperatures. The emergent interactions in the effective model are mediated by virtual excitations of high-energy states: For example, virtual doublon-hole excitations in the Fermi-Hubbard model mediate antiferromagnetic spin-exchange interactions in the derived effective model, known as the $t-J-3s$ model. Formally this procedure is described by performing a unitary Schrieffer-Wolff basis transformation. In the context of quantum simulation, it can be advantageous to consider the effective model to interpret experimental results. However, virtual excitations such as doublon-hole pairs can obfuscate the measurement of physical observables. Here we show that quantum simulators allow one to access the effective model even more directly by performing measurements in a rotated basis. We propose a protocol to perform a Schrieffer-Wolff transformation on Fermi-Hubbard low-energy eigenstates (or thermal states) to dynamically prepare approximate $t-J-3s$ model states using fermionic atoms in an optical lattice. Our protocol involves performing a linear ramp of the optical lattice depth, which is slow enough to eliminate the virtual doublon-hole fluctuations but fast enough to freeze out the dynamics in the effective model. We perform a numerical study using exact diagonalization and find an optimal ramp speed for which the state after the lattice ramp has maximal overlap with the $t-J-3s$ model state. We compare our numerics to experimental data from our Lithium-6 fermionic quantum gas microscope and show a proof-of-principle demonstration of this protocol. More generally, this protocol can be beneficial to studies of effective models by enabling the suppression of virtual excitations in a wide range of quantum simulation experiments.