论文标题

尊重因果关系是您培训物理信息的神经网络所需的一切

Respecting causality is all you need for training physics-informed neural networks

论文作者

Wang, Sifan, Sankaran, Shyam, Perdikaris, Paris

论文摘要

尽管物理信息的神经网络(Pinn)的普及在稳步上升,但到目前为止,Pinns尚未成功地模拟动态系统,其解决方案表现出多尺度,混乱或湍流行为。在这项工作中,我们将这一缺点归因于现有PINNS公式的无法尊重物理系统演变所固有的时空因果结构。我们认为,这是一个基本限制,也是一个关键的误差源,最终可以引导Pinn模型转向错误的解决方案。我们通过提出对PINNS损失功能的简单重新制定来解决这种病理,该功能可以明确说明模型训练期间的身体因果关系。我们证明,仅这种简单的修改就足以引入显着的准确性改进,以及评估PINNS模型收敛性的实际定量机制。我们在一系列基准中提供了最新的数值结果,现有的Pinns配方失败,包括混乱的混乱制度中的混乱洛伦兹系统,库拉莫托 - sivashinsky方程,以及湍流制度中的Navier-Stokes方程。据我们所知,这是Pinns首次成功模拟此类系统,为其适用于工业复杂性问题的新机会。

While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源