论文标题

与非对称表格I:Hölder估计值有关的非本地运算符

Nonlocal operators related to nonsymmetric forms I: Hölder estimates

论文作者

Kassmann, Moritz, Weidner, Marvin

论文摘要

本文的目的是开发由与非对称形式相关的非本地运算符驱动的抛物线方程的规律性理论。 Hölder的规律性和弱的Harnack不平等现象是使用最近建立的非局部能量方法的扩展证明的。我们能够将非对称非局部运算符的理论与局部线性情况下的Aronson-Serrin的重要结果联系起来。非本地到局部收敛结果示例了这种连接,从而将运算符的限制类别识别为具有漂移项的二阶差异操作员。

The aim of this article is to develop the regularity theory for parabolic equations driven by nonlocal operators associated with nonsymmetric forms. Hölder regularity and weak Harnack inequalities are proved using extensions of recently established nonlocal energy methods. We are able to connect the theory of nonsymmetric nonlocal operators with the important results of Aronson-Serrin in the local linear case. This connection is exemplified by nonlocal-to-local convergence results identifying the limiting class of operators as second order differential operators with drift terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源