论文标题

部分可观测时空混沌系统的无模型预测

Safe adaptation in multiagent competition

论文作者

Shen, Macheng, How, Jonathan P.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Achieving the capability of adapting to ever-changing environments is a critical step towards building fully autonomous robots that operate safely in complicated scenarios. In multiagent competitive scenarios, agents may have to adapt to new opponents with previously unseen behaviors by learning from the interaction experiences between the ego-agent and the opponent. However, this adaptation is susceptible to opponent exploitation. As the ego-agent updates its own behavior to exploit the opponent, its own behavior could become more exploitable as a result of overfitting to this specific opponent's behavior. To overcome this difficulty, we developed a safe adaptation approach in which the ego-agent is trained against a regularized opponent model, which effectively avoids overfitting and consequently improves the robustness of the ego-agent's policy. We evaluated our approach in the Mujoco domain with two competing agents. The experiment results suggest that our approach effectively achieves both adaptation to the specific opponent that the ego-agent is interacting with and maintaining low exploitability to other possible opponent exploitation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源