论文标题

与图形分类结构推断的监督对比学习

Supervised Contrastive Learning with Structure Inference for Graph Classification

论文作者

Jia, Hao, Ji, Junzhong, Lei, Minglong

论文摘要

高级图神经网络最近显示了图形分类任务的巨大潜力。与节点分类不同的是,从本地邻居汇总的节点嵌入可以直接用于学习节点标签,图形分类需要不同级别的拓扑信息的层次积累才能生成区分图形嵌入。尽管如此,如何充分探索图形结构并制定有效的图形分类管道仍然是基本的。在本文中,我们提出了一个基于有监督的对比度学习的新型图神经网络,其结构推断了图形分类。首先,我们提出了一个数据驱动的图表增强策略,该策略可以发现其他连接以增强现有边缘集。具体而言,我们诉诸于基于扩散级联的结构推理阶段,以恢复具有高节点相似性的可能连接。其次,为了提高图形神经网络的对比功率,我们建议使用监督的对比度损失进行图形分类。通过集成标签信息,一vs-and的对比度学习可以扩展到许多VS-MORNY设置,以便将具有较高拓扑相似性的图形嵌入方式更加接近。监督的对比损失和结构推断可以自然地纳入分层图神经网络中,在该网络中,可以充分探索拓扑模式以产生歧视性图嵌入。实验结果表明,与最近的最新方法相比,该方法的有效性。

Advanced graph neural networks have shown great potentials in graph classification tasks recently. Different from node classification where node embeddings aggregated from local neighbors can be directly used to learn node labels, graph classification requires a hierarchical accumulation of different levels of topological information to generate discriminative graph embeddings. Still, how to fully explore graph structures and formulate an effective graph classification pipeline remains rudimentary. In this paper, we propose a novel graph neural network based on supervised contrastive learning with structure inference for graph classification. First, we propose a data-driven graph augmentation strategy that can discover additional connections to enhance the existing edge set. Concretely, we resort to a structure inference stage based on diffusion cascades to recover possible connections with high node similarities. Second, to improve the contrastive power of graph neural networks, we propose to use a supervised contrastive loss for graph classification. With the integration of label information, the one-vs-many contrastive learning can be extended to a many-vs-many setting, so that the graph-level embeddings with higher topological similarities will be pulled closer. The supervised contrastive loss and structure inference can be naturally incorporated within the hierarchical graph neural networks where the topological patterns can be fully explored to produce discriminative graph embeddings. Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源