论文标题

姿势妈妈:加强半监督人姿势估计的关键点关系

Pose-MUM : Reinforcing Key Points Relationship for Semi-Supervised Human Pose Estimation

论文作者

Kim, JongMok, Lee, Hwijun, Lim, Jaeseung, Na, Jongkeun, Kwak, Nojun, Choi, Jin Young

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A well-designed strong-weak augmentation strategy and the stable teacher to generate reliable pseudo labels are essential in the teacher-student framework of semi-supervised learning (SSL). Considering these in mind, to suit the semi-supervised human pose estimation (SSHPE) task, we propose a novel approach referred to as Pose-MUM that modifies Mix/UnMix (MUM) augmentation. Like MUM in the dense prediction task, the proposed Pose-MUM makes strong-weak augmentation for pose estimation and leads the network to learn the relationship between each human key point much better than the conventional methods by adding the mixing process in intermediate layers in a stochastic manner. In addition, we employ the exponential-moving-average-normalization (EMAN) teacher, which is stable and well-suited to the SSL framework and furthermore boosts the performance. Extensive experiments on MS-COCO dataset show the superiority of our proposed method by consistently improving the performance over the previous methods following SSHPE benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源