论文标题
使用机器学习技术的一般社会工程攻击的威胁检测
Threat Detection for General Social Engineering Attack Using Machine Learning Techniques
论文作者
论文摘要
本文探讨了使用机器学习(ML)技术的一般社会工程(SE)攻击的威胁检测,而不是专注于或限于特定的SE攻击类型,例如电子邮件网络钓鱼。首先,本文处理并从先前的知识图(kg)中获取更多SE威胁数据,然后提取不同的威胁功能,并生成与三种不同功能组合相对应的新数据集。最后,分别使用三个数据集创建和培训了9种类型的ML模型,并将其性能与27个威胁探测器和270次实验进行比较。实验结果和分析表明:1)ML技术在检测一般SE攻击方面是可行的,并且某些ML模型非常有效;基于ML的SE威胁检测与基于KG的方法互补。 2)生成的数据集可用,并且先前工作中提出的SE领域本体论可以剖析SE攻击并提供SE威胁功能,从而将其用作未来研究的数据模型。此外,讨论了有关不同ML检测器和数据集的特征的更多结论和分析。
This paper explores the threat detection for general Social Engineering (SE) attack using Machine Learning (ML) techniques, rather than focusing on or limited to a specific SE attack type, e.g. email phishing. Firstly, this paper processes and obtains more SE threat data from the previous Knowledge Graph (KG), and then extracts different threat features and generates new datasets corresponding with three different feature combinations. Finally, 9 types of ML models are created and trained using the three datasets, respectively, and their performance are compared and analyzed with 27 threat detectors and 270 times of experiments. The experimental results and analyses show that: 1) the ML techniques are feasible in detecting general SE attacks and some ML models are quite effective; ML-based SE threat detection is complementary with KG-based approaches; 2) the generated datasets are usable and the SE domain ontology proposed in previous work can dissect SE attacks and deliver the SE threat features, allowing it to be used as a data model for future research. Besides, more conclusions and analyses about the characteristics of different ML detectors and the datasets are discussed.