论文标题
图形过滤在扩展图上
Graph filtering over expanding graphs
论文作者
论文摘要
我们从数据中学习表示形式的能力与我们设计过滤器的能力有关,这些过滤器可以利用其与基础域的耦合。图形过滤器是用于网络数据的一种工具,并且已用于无数应用程序中。但是,尽管实际网络的性质不断扩大,但图形过滤器仅与固定数量的节点一起使用。在这种环境中的学习过滤器不仅挑战,这不仅是因为维度的增加,而且还因为连接性仅在附件模型中已知。我们通过仅依靠这种模型来为数据提出一个用于扩展图的滤波器学习方案。通过随机表征过滤器,我们开发了一个受多内核学习启发的经验风险最小化框架,以平衡传入节点处的信息流入和流出。我们提出了与依赖确切拓扑的基线相比,我们为扩展图表而不是扩展图表而不是扩展图表的方法。对于SSL,建议的方案使用传入的节点信息来改进现有的任务。这些发现仅依赖于随机连接模型,为扩展图的学习表示奠定了基础。
Our capacity to learn representations from data is related to our ability to design filters that can leverage their coupling with the underlying domain. Graph filters are one such tool for network data and have been used in a myriad of applications. But graph filters work only with a fixed number of nodes despite the expanding nature of practical networks. Learning filters in this setting is challenging not only because of the increased dimensions but also because the connectivity is known only up to an attachment model. We propose a filter learning scheme for data over expanding graphs by relying only on such a model. By characterizing the filter stochastically, we develop an empirical risk minimization framework inspired by multi-kernel learning to balance the information inflow and outflow at the incoming nodes. We particularize the approach for denoising and semi-supervised learning (SSL) over expanding graphs and show near-optimal performance compared with baselines relying on the exact topology. For SSL, the proposed scheme uses the incoming node information to improve the task on the existing ones. These findings lay the foundation for learning representations over expanding graphs by relying only on the stochastic connectivity model.