论文标题
通过变异自动编码器和原子表示理解化学反应
Understanding chemical reactions via variational autoencoder and atomic representations
论文作者
论文摘要
在原子数值建模可访问的时间尺度上,化学反应被认为是罕见事件。原子模拟通常沿原子结构空间中化学反应的低维表示有偏见,即沿着集体变量,以加速对这些不可思议的事件的采样。但是,由于过渡的复杂性,合适的集体变量通常很复杂。因此,我们提出了一种自动方法,该方法使用固定的Behler-Parrinello函数或从预先训练的机器学习潜力中提取的固定Behler-Parrinello函数或表示形式来生成可靠的集体变量。具有这些表示形式的变异自动编码器作为输入是训练的,而其潜在空间具有任意维度为我们提供了一组集体变量。由此产生的集体变量从原子代表中继承了所有必要的不可分割,并且可以完全不受监督的培训。使用三种不同的化学反应证明了该方法的有效性,一种是异质铝硅酸盐催化剂的复杂水解。最后,我们在看不见的原子结构预测的背景下考虑该方法,以生成模型的方式有效地为集体变量的不同值创建结构。
On the time scales accessible to atomistic numerical modelling, chemical reactions are considered rare events. Atomistic simulations are typically biased along a low-dimensional representation of a chemical reaction in an atomic structure space, i.e., along the collective variable, to accelerate sampling of these improbable events. However, suitable collective variables are often complicated to guess due to the complexity of the transitions. Therefore, we present an automatic method of generating robust collective variables from atomic representation vectors, using either fixed Behler-Parrinello functions or representations extracted from pre-trained machine learning potentials. Variational autoencoder with these representations as inputs is trained while its latent space with arbitrary dimension gives us the set of collective variables. The resulting collective variables inherit all necessary invariances from the atomic representations and can be trained entirely unsupervised. The method's effectiveness is demonstrated using three different chemical reactions, one being the complex hydrolysis of a heterogeneous aluminosilicate catalyst. Lastly, we consider the method in the context of unseen atomic structure prediction, efficiently creating structures for different values of collective variables in a generative model fashion.