论文标题

在KAC-Luttinger模型和Bose-Einstein凝结中的光谱间隙上

On the spectral gap in the Kac-Luttinger model and Bose-Einstein condensation

论文作者

Sznitman, Alain-Sol

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the Dirichlet eigenvalues of the Laplacian among a Poissonian cloud of hard spherical obstacles of fixed radius in large boxes of $\mathbb{R}^d$, $d \ge 2$. In a large box of side-length $2l$ centered at the origin, the lowest eigenvalue is known to be typically of order $(\log l)^{-2/d}$. We show here that with probability arbitrarily close to $1$ as $l$ goes to infinity, the spectral gap stays bigger than $σ(\log l)^{-(1 + 2/d)}$, where the small positive number $σ$ depends on how close to $1$ one wishes the probability. Incidentally, the scale $(\log l)^{-(1+ 2/d)}$ is expected to capture the correct size of the gap. Our result involves the proof of new deconcentration estimates. Combining this lower bound on the spectral gap with the results of Kerner-Pechmann-Spitzer, we infer a type-I generalized Bose-Einstein condensation in probability for a Kac-Luttinger system of non-interacting bosons among Poissonian spherical impurities, with the sole macroscopic occupation of the one-particle ground state when the density exceeds the critical value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源