论文标题

渐近几何tevelev hypersurfaces

Asymptotic geometric Tevelev degrees of hypersurfaces

论文作者

Lian, Carl

论文摘要

令$(c,p_1,\ ldots,p_n)$为固定的通用尖曲线,让$(x,x_1,\ ldots,x_n)$为$ e $ $ e $ and dimension $ r $的平稳性超出性。我们考虑枚举地图$ f:c \ t $ d $的x $(在环境投射空间中测量)的问题,以便$ f(p_i)= x_i $。与$ r $和$ d $相比,与$ g $,$ e $和$ r $相比,这些数字首先是通过传递给buch-pandharipande获得的虚拟计数来计算的,然后通过(通过与pandharipande的作者一起在作者的工作中)进行虚拟数量的空间来进行分析,以弥补了一个分析,以弥补了一项分析,从而通过buch-pandharipande获得了数字。在本说明中,我们通过投影几何形状给出了更简单的计算。

Let $(C,p_1,\ldots,p_n)$ be a fixed general pointed curve and let $(X,x_1,\ldots,x_n)$ be a smooth hypersurface of degree $e$ and dimension $r$ with $n$ general points. We consider the problem of enumerating maps $f:C\to X$ of degree $d$ (as measured in the ambient projective space) such that $f(p_i)=x_i$. When $e$ is small compared to $r$ and $d$ is large compared to $g$, $e$, and $r$, these numbers have been computed first by passing to a virtual count in Gromov-Witten theory obtained by Buch-Pandharipande, and then by showing (in work of the author with Pandharipande) that the virtual counts are enumerative via an analysis of boundary contributions in the moduli space of stable maps. In this note, we give a simpler computation via projective geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源