论文标题
带有竖琴的AU MIC的一年:II-恒星活动和星形行星相互作用
One year of AU Mic with HARPS: II -- stellar activity and star-planet interaction
论文作者
论文摘要
我们对使用HARPS光谱仪对22-Myr Old Planet-andoting M Dwarf Au Mic进行的为期1年的密集监测运动进行了光谱分析。在同伴论文中,我们报道了系统的两个近距离过境行星的径向径向速度(RV)签名,其各自的半扩张量为5.8 $ \ pm $ 2.5 m/s和8.5 $ \ pm $ \ pm $ 2.5 m/s for Au Mic B和Au Mic c。在这里,我们使用多普勒成像对AU MIC C的RV半振幅进行独立测量,以同时对活动引起的扭曲和行星诱导的线轮廓的移位进行建模。最终的半振幅为13.3 $ \ pm $ 4.1 m/s的au mic c增强了这样的想法:行星具有令人惊讶的大内密度,并具有当前标准的核心积聚模型。我们的亮度图具有比2019年底在Spirou SpecoloPolariMeter获得的亮度图明显更高的斑点覆盖率和差分旋转的水平要高得多,这表明恒星磁性活性在$ \ sim $ 1- $ 1-yr的时间跨度上急剧发展。此外,我们报告了调制的3- $σ$检测在8.33 $ \ pm $ \ $ 0.04 d的He I D3(587.562 nm)发射通量,接近Au Mic b的8.46-D轨道周期。如果后者托管了$ \ sim $ 10 G. Spectropolopolorimetric的磁场,则需要这种排放的功能(几个10 $^{17} $ W)与恒星风与近距离行星之间相互作用的3D磁水动力学模拟一致。
We present a spectroscopic analysis of a 1-year intensive monitoring campaign of the 22-Myr old planet-hosting M dwarf AU Mic using the HARPS spectrograph. In a companion paper, we reported detections of the planet radial velocity (RV) signatures of the two close-in transiting planets of the system, with respective semi-amplitudes of 5.8 $\pm$ 2.5 m/s and 8.5 $\pm$ 2.5 m/s for AU Mic b and AU Mic c. Here, we perform an independent measurement of the RV semi-amplitude of AU Mic c using Doppler imaging to simultaneously model the activity-induced distortions and the planet-induced shifts in the line profiles. The resulting semi-amplitude of 13.3 $\pm$ 4.1 m/s for AU Mic c reinforces the idea that the planet features a surprisingly large inner density, in tension with current standard models of core accretion. Our brightness maps feature significantly higher spot coverage and lower level of differential rotation than the brightness maps obtained in late 2019 with the SPIRou spectropolarimeter, suggesting that the stellar magnetic activity has evolved dramatically over a $\sim$1-yr time span. Additionally, we report a 3-$σ$ detection of a modulation at 8.33 $\pm$ 0.04 d of the He I D3 (587.562 nm) emission flux, close to the 8.46-d orbital period of AU Mic b. The power of this emission (a few 10$^{17}$ W) is consistent with 3D magnetohydrodynamical simulations of the interaction between stellar wind and the close-in planet if the latter hosts a magnetic field of $\sim$10 G. Spectropolarimetric observations of the star are needed to firmly elucidate the origin of the observed chromospheric variability.