论文标题

孤子玻色子星:薄壁近似之外的数值解决方案

Solitonic Boson Stars: Numerical solutions beyond the thin-wall approximation

论文作者

Collodel, Lucas G., Doneva, Daniela D.

论文摘要

在本文中,我们介绍了几套静态和球形对称的孤子玻色子恒星的解决方案。每个集合的特征在于σ的值,该值定义了复杂标量场理论中的孤子电位。对于σ的小值而言,这种潜力的主要特征是出现的,但是对于该方程变得如此僵硬以至于构成数值挑战。在不进行近似值的情况下,我们构建了用于降低σ值的集合,并显示它们如何在参数空间中改变其行为,从而特别注意薄壁配置的区域。探索了薄壁近似的有效性以及溶液集不连续的可能性。我们研究了玻色子恒星半径的五个不同可能的定义,并利用它们来计算每种溶液的紧凑性,以评估结果的不同。

In this paper we present several set of solutions of static and spherically symmetric solitonic boson stars. Each set is characterized by the value of σ that defines the solitonic potential in the complex scalar field theory. The main features peculiar to this potential occur for small values of σ, but for which the equations become so stiff as to pose numerical challenges. Without making approximations we build the sets for decreasing σ values and show how they change their behavior in the parameter space, giving special attention to the region where thin-wall configurations dwell. The validity of the thin-wall approximation is explored as well as the possibility of the solution sets being discontinuous. We investigate five different possible definitions of a radius for boson stars and employ them to calculate the compactness of each solution in order to assess how different the outcomes might be.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源