论文标题
Kugel-Khomskii模型中量子纠缠对温度的抗性
The resistance of quantum entanglement to temperature in the Kugel-Khomskii model
论文作者
论文摘要
具有纠缠旋转和轨道自由度的Kugel-Khomskii模型是量子信息处理中许多重要特征的良好测试基础,例如纠缠光谱中的牢固间隙。在这里,我们证明在温度在广泛的参数内的作用下,纠缠也可以鲁棒。特别是表明,纠缠的温度依赖性通常表现出非单调行为。也就是说,事实证明,模型参数的范围在零温度下不存在纠缠,但随着温度的升高,它看起来会经过最大值,并再次消失。
The Kugel--Khomskii model with entangled spin and orbital degrees of freedom is a good testing ground for many important features in quantum information processing, such as robust gaps in the entanglement spectra. Here, we demonstrate that the entanglement can be also robust under effect of temperature within a wide range of parameters. It is shown, in particular, that the temperature dependence of entanglement often exhibits a nonmonotonic behavior. Namely, there turn out to be ranges of the model parameters, where entanglement is absent at zero temperature, but then, with an increase in temperature, it appears, passes through a maximum, and again vanishes.