论文标题

对象发现和表示网络

Object discovery and representation networks

论文作者

Hénaff, Olivier J., Koppula, Skanda, Shelhamer, Evan, Zoran, Daniel, Jaegle, Andrew, Zisserman, Andrew, Carreira, João, Arandjelović, Relja

论文摘要

自我监督学习(SSL)的承诺是利用大量未标记的数据来解决复杂的任务。尽管简单,图像级学习取得了出色的进步,但最近的方法显示出包括图像结构知识的优势。但是,通过引入手工制作的图像分割来定义感兴趣的区域或专门的增强策略,这些方法牺牲了使SSL如此强大的简单性和通用性。取而代之的是,我们提出了一个自我监督的学习范式,该学习范式本身会发现这种图像结构。我们的方法,ODIN,夫妻对象发现和表示网络,以发现有意义的图像分割而无需任何监督。由此产生的学习范式更简单,更易碎,更一般,并且在可可对对象检测和实例分段以及对Pascal和CityScapes的语义分割方面取得了最先进的转移学习结果,同时对戴维斯的视频分割进行了强烈监督的预先训练。

The promise of self-supervised learning (SSL) is to leverage large amounts of unlabeled data to solve complex tasks. While there has been excellent progress with simple, image-level learning, recent methods have shown the advantage of including knowledge of image structure. However, by introducing hand-crafted image segmentations to define regions of interest, or specialized augmentation strategies, these methods sacrifice the simplicity and generality that makes SSL so powerful. Instead, we propose a self-supervised learning paradigm that discovers this image structure by itself. Our method, Odin, couples object discovery and representation networks to discover meaningful image segmentations without any supervision. The resulting learning paradigm is simpler, less brittle, and more general, and achieves state-of-the-art transfer learning results for object detection and instance segmentation on COCO, and semantic segmentation on PASCAL and Cityscapes, while strongly surpassing supervised pre-training for video segmentation on DAVIS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源